Poset embeddings of Hilbert functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poset embeddings of Hilbert functions

For a standard graded algebra R, we consider embeddings of the poset of Hilbert functions of R-ideals into the poset of R-ideals, as a way of classification of Hilbert functions. There are examples of rings for which such embeddings do not exist. We describe how the embedding can be lifted to certain ring extensions, which is then used in the case of polarization and distraction. A version of a...

متن کامل

Hilbert Space Embeddings of POMDPs

A nonparametric approach for policy learning for POMDPs is proposed. The approach represents distributions over the states, observations, and actions as embeddings in feature spaces, which are reproducing kernel Hilbert spaces. Distributions over states given the observations are obtained by applying the kernel Bayes’ rule to these distribution embeddings. Policies and value functions are defin...

متن کامل

Hilbert Space Embeddings of PSRs

Many problems in machine learning and artificial intelligence involve discrete-time partially observable nonlinear dynamical systems. If the observations are discrete, then Hidden Markov Models (HMMs) (Rabiner, 1989) or, in the control setting, Partially Observable Markov Decision Processes (POMDPs) (Sondik, 1971) can be used to represent belief as a discrete distribution over latent states. Pr...

متن کامل

Hilbert Space Embeddings of Hidden Markov Models

Hidden Markov Models (HMMs) are important tools for modeling sequence data. However, they are restricted to discrete latent states, and are largely restricted to Gaussian and discrete observations. And, learning algorithms for HMMs have predominantly relied on local search heuristics, with the exception of spectral methods such as those described below. We propose a nonparametric HMM that exten...

متن کامل

Injective Hilbert Space Embeddings of Probability Measures

A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). The embedding function has been proven to be injective when the reproducing kernel is universal. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2012

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-012-1097-6